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ABSTRACT

A class of transformations on [0, 1)%, which includes transformations ob-
tained by a Poincare section of the Lorenz equation, is considered. We
prove that the Hausdorff dimension of the attractor of these transforma-
tions equals z+ 1 where z is the unique zero of a certain pressure function.
Furthermore we prove that all vertical intersections with this attractor,
except of countable many, have Hausdorff dimension z.

1. Introduction

One of the best known differential equations which exhibit chaotic behavior is the
Lorenz equation (see [3]). Using a Poincare section one can reduce it to a discrete
time dynamical system on [0, 1)2. This dynamical system is qualitatively the same
as the transformations given by F(z,y) = (T(z), g(z,y)) where g(z,.): [0,1] =
(0,1) is a contraction for each z € [0,1] and T {0, 1] — [0, 1] is piecewise strictly
increasing with two monotone pieces.

We use a slightly more general definition. A transformation F: [0,1]% — [0,1]?
is called a two dimensional Lorenz transformation if F(z,y) = (T(z),g(z,y))
where:

(1) T: [0,1] — [0,1] is piecewise monotonic. This means, that there are ¢; €

[0,1] for 0 < i < N with 0 = ¢y < ... < ¢y = 1 such that T, c,,,) is
continuous and strictly monotone for 0 <7 < N.
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(2) g: (0,1 = (0,1) is C! on P x [0,1], where P = [0,1]~Uyc;<p Ci-
Furthermore we suppose sup |0g/0z| < oo, sup|dg/dy| := k < 1 and
inf |0g/dy| > 0.

(3) F((ci,ci1) % [0,1]) N F((cj,ejs1) x [0,1]) = @ for distinct ¢,j with

0<4,j5<N.

Denote the projection to the z-axis by Il and set X = (o___ F"(II"'P).
Then X is the attractor for all orbits under F, which start in a point x € II"! P
and such that F"x € II"1P for all n > 0. Observe that F is invertible on X. For
a € [0,1] and a subset 4 of [0, 1)? denote the vertical intersection ANTI~!a by A,
and the Hausdorff dimension of A by HD(A). The aim of this paper is to prove
that the Hausdorff dimension HD(X,) of a vertical intersection X,, for ¢ € [0, 1]
equals the unique zero 2z of the function t — p(F,ty) with ¢ = log|dg/dy|.
Furthermore we will show HD(X) =2z + 1.

Such results are known for one dimensional dynamical systems, for axiom A
diffeomorphisms and for self affine sets. In [12] it is shown that HD(X) equals the
unique zero of ¢t — p(T|x,—tlog|T"|) if T is an expanding piecewise monotonic
transformation on [0,1] and X is a completely invariant subset of {0,1]. This is
also proved in [5] with slightly more general assumptions. In [10] one finds the
same formula as we prove in Theorem 1, but for an axiom A diffeomorphism. In
[13] a non-invertible map semiconjugate with a finite shift is considered and the
same formula as in Theorem 2 is obtained. For the self affine case see the books
of Falkoner ([1], [2]) and Pesin ([11]).

Remark 1: The points ¢; € [0,1] for 0 < i < N are called critical points. Set
C = {c;: 1 <i<n}. For z € [0,1) set TF(z) = limy~ . T"(y) and for x € (0, 1]
set T™(z) = limy »; T™(y).

We can always declare finitely many additional points to be critical to get the

following property of C:

(1) ¥ TF(c;) = THcj) and Tolc:), To(c;) ¢ C for some a,b € {+,-},
k,0 > 0 and ¢;,c; € C then either min{k,l} = 0 or T¥"(c;) = Ty (c5)
for 1 < r < min{k,1}.

(2) If ¢; = Ti(c;) and To(c;) € C then I =0 and ¢; = ¢;.

It is shown in [8] that these properties can be achieved by declaring finitely many
additional points to be critical. We need this property to prove Lemma 7 below.

Set V = {(ci,¢i+1): 0 <i < N} and Z = II"*V. In our situation the following
definition of pressure will be useful. Let f be a bounded and piecewise continuous
function, that means f|z is continuous for Z € 2. Set Z, = \/I_q F~*Z and
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Spf(x) = Z?;ol (F'x). Then we define pn(F, f) = 3.,z supyez e/ and
p(F, f) = lim, % logpn(F, f). The limit in the above definition exists, since
Ptk (Fy f) < po(F, f)pe(F, f) holds (see [16]) and since f is bounded. Set E =
No>o T72P. This is the set of points z € [0,1], for which all iterates of T stay in
P. The exact results are:

THEOREM 1: Let F be a two dimensional Lorenz transformation. Suppose T
is topologically transitive and V is a generator for T. If the family of maps
y — g/0y(z,y) is uniformly Holder continuous, then t — p(F,typ) has a unique
gero z and HD(X,) =z holds for all s € E.

We say the transformation T [0,1] — [0, 1] is expanding if T'|y is C! for V € ¥
and inf |T'| > 1.

THEOREM 2: If the same assumptions as in Theorem 1 hold and if additionally
T is expanding, then HD(X) = z + 1.

2. The upper bound for HD(X,)
We begin with the proof of the desired properties of the pressure function.

LEMMA 1: Suppose F is a two dimensional Lorenz transformation. Then the
map t ~ p(F,ty) is continuous, strictly decreasing and tends to —oo for t = oo.
Hence there is a unique zero z > 0.

Proof: Set ¥ = —supycp-1p ¢(x). Then vy > 0 since sup |0g/dy| < 1 holds. For
0<t<swegetsp=tp+(s—1t)p <to—(s—1t)y. With the same proof as in
[16] this implies

p(F,s0) < p(Ftp) — (s — t)v.

This inequality proves that t — p(F,ty) is strictly decreasing. Since
1
0 < p(F,0) = lim —logcard(Z,) < card(Z) < oo
n—o0 N

holds, we also get lim;_,o0 p(F,t@) = —o0.

The continuity of the map ¢ — p(F, ty) follows immediatly from the well-known
formula [p(F, f) — p(F, g)| < ||f — gl|e for bounded functions f and g (see [16]).
|

We already can tackle the proof that the unique zero z of t — p(F,ty) is an
upper bound for HD(X,,) for o € E. Similar arguments are given in [10] and [12].
For a subset A C [0, 1]? we denote the diameter of A by |A|. Denote the set of all
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finite or countable covers of A by intervals with diameter less than 9 by U(A4, 9)
and set vy 9(A) = infeey(a0) Doee ICIF- Then v (A) = limy_, v 9(A) is called
t-dimensional Hausdorff measure, where the limit exists since v, y is increasing
when 9 is decreasing but might be co. Set Z,, = F"Z, for n > 0 and observe
that X C (,50Urez, 1 holds.

LEMMA 2: Let F be a two dimensional Lorenz transformation and choose o € E.
Then HD(X,) < z.

Proof: For n > 0 choose I € Z,, with ¢ € III. Then Z; := F~™"I is an element
of Z,,. Since T™ is invertible from V; := I1Z; — III there is a unique n; € V;
with T"n; = 0. From the mean value theorem and the chain rule we obtain the
existence of a ¢ € {0, 1] with

1ol = 10,11 5 F"C0r,€ |—H|a (Fi(11,0))|

Fix an arbitrary ¢ € (0,1). Then we find an n, such that |I,| < ¥ forall [ € T,
since sup |0¢g/dy| = k < 1 holds.
Choose t > z. It is clear that | rez, Io covers X,. Hence

veo(Xs) < ) 11" < Y sup exp (tilog‘ag/ay(F"(m,y))’)
1=0

1€T, Iez, YE[0,1]
oeNlr ecIlI

n—1
< ) sup sup exp tzloglag/ay(Fi(w,y))|
rez, €V yelo,1] i=0
oelnl
< Z sup e3¢ = 5 (F, top).
Zezner

To show HD(X,) <t it suffices to show that 14(X,) is bounded. We know that
Llog p,(F,tp) converges to p(F,ty), where p(F,tp) < 0 holds because of the
choice of t > 2. Hence p,(F,tp) tends to zero and is bounded. We conclude that
vt,9(X,) is bounded for all 9 > 0. Hence 1(X,) is bounded for all t > 2 and
HD(X,) < z follows. |

Observe that the definition of F' implies I1Z,, = V,,, where V), is defined by
= Vi T7*V. Hence hiop(T) = p(F,0) follows, where hyo,(T") denotes the
topological entropy of the one dimensional dynamical system ([0, 1], T).

Remark 2: 1If 2 = 0 then HD(X,) = z is already shown. Hence we will assume
z > 0 during the rest of this paper. With Lemma 1 this implies h;op (1) > 0.
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3. The lower bound for HD(X,)

We fix a t € (0,2) and set ¢ = tp. Then p(F,%) > 0 and we can choose an
€ > 0 such that p(F,¢)) — 2¢ > 0 holds. We now use also the two sided partition
Zr = \/f:_g FiZ. All three families of sets Zi, Z; and Zy; are partitions of X
and for x € X we denote the unique element of the partition which includes x
by Zi(x), I;(x) and Zg(x).

LEMMA 3: Suppose V is a one sided generator for T. Then Z is a two sided
generator for F' on X. Furthermore for all § > 0 there is an n(6) such that
V| <éforall V e Vn<5) and |Z| <4 forall Z € Zn((;),n((;) holds.

Proof: To prove the first assertion choose x # y € X. If [Ix # Ily the assertion
is trivial. If IIx = IIy there is an n > 0 with I,(x) N I,(y) = 0 since g is a
contraction on every vertical line and it follows that Z is a generator.

The proof of the second assertion is standard. 1

LEMMA 4: Suppose the family of maps y — %%(m, y) is uniformly Hélder contin-

uous and V is a generator. Then there is a function ): [0,1]> — R and an N € N
such that |z is constant for Z € Zx and p(F,) < p(F,v) < p(F,¥) +¢.

Proof:  Since the family of maps y +» g%(a;,y) is uniformly Holder continuous
and |8¢g/dy| is bounded away from 0 and oo also the maps y — ¥(z,y) are
uniformly Hélder continuous for each z € P. Set s(x) = (IIx,0) for x € I"1P
and "
un(x) = Y $(FIx) - $(FIs(x)).
=0

Since |F7(x) — F7(s(x))| < K/ |x — s(x)| < k7 holds, we get |u,(x) — um(x)] <
¢ my1(k*) for a ¢ > 0 and an o > 0. Hence u(x) = lim, ;0 un(X) exists
and is continuous on Z for Z € Z as a uniform limit of continuous functicns.
Furthermore u is bounded.

Set ) = ¢ ~u+uoF. Then p(F,¢) = p(F, ) follows by the definition of
pressure and we compute

P(x) =p(x) = Y Y(FIx) - p(Fs(x))
j=0
+ Y Y(FI'x) — §(FIs(Fx))
j=0

=t(s(x)) — I _ H(FIHs(x)) — p(Fs(Fx)).

i=0
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Since s(F'x) = s(F's(x)) the above equation proves that v is constant on vertical
lines. Furthermore ) is continuous on the elements of Z and bounded. Hence we
find with use of Lemma 3 an N € N such that ||¢ — Y- zeczy Xz infxez D)oo <
. Set ¥ = Y ;cz, Xzinfxez ¥(x); then the two assertions of the lemma are

fulfilled. |
Set Zoo = {0 In # 0: In € Z,,} and for o € P set

I, ={I:1 €1, for somen>0and o € IlI}

and
Too,o ={I € Ios: 0 € 11T }.

We will use the function 3 constructed above to find an ergodic F-invariant
measure g on X with p({;ez_ I) >0forall o € E and h,(F) +t [ ¢dp > 0.
For the construction of this measure we have to introduce the Markov diagram
over W of the one dimensional dynamical system ([0, 1},T), where W is a finite
partition refining V. This concept is due to Hofbauer (see [6] and [7]).

For an open subinterval D of a Zy € W the nonempty intervals among T'(D)NZ
for Z € W are called successors of D. We write D — C if C is a successor of
D. All successors of a D are again open subintervals of a Z; € W since T is
piecewise monotonic. Hence building successors can be iterated.

Set Do = W and define D; = D;_; U {D: 3C € D;_; with C — D}. Then all
the D; are finite sets since card(W) < oo and each D € D;_; has not more than
card(W) successors. Hence D = |J;2 D; is at most countable and we call the
oriented graph (D, —) with arrows C — D, if D is a successor of C, the Markov
diagram of ([0, 1],7) over W.

A finite or infinite sequence Dy D ... with D; € D is called a path if D;_; — D;
holds for ¢ > 0. A subset C C D is called closed, if D € C and D — C imply
C € C. It is called irreducible if, whenever C € C and D € C, a path leads from
D to C and no subset of D which contains C has this property.

LEMMA 5: Suppose that T is topologically transitive, hiop(T) > 0 and V is a
generator for T. Then there is an irreducible closed subset C C D, such that
all irreducible subsets of D~ C consist only of a single closed path and for all
D € D~C there is a path starting in D, which leads to C. Furthermore there is
a finite subset A C C with Jpc 4 D = [0,1].

Proof: Since V is a generator and W refines V also W is a generator. This, and
the first and the second assumption of the lemnma are used to prove the first part
of the result. See [4] for a detailed proof.



Vol. 116, 2000 TWO DIMENSIONAL LORENZ TRANSFORMATIONS 259

For the second part we use Theorem 10 in [6]. It states that there is a finite set
A C C with Upeys D = Upee D- The two infinite sets appearing in this theorem
are empty, since W is a generator. Since C is closed and T is topologically
transitive we get Upee D = [0,1]. 1

Remember that the function 1/3 constructed in Lemma 4 is constant on the
elements of Zy. We can conceive z& as a function in one variable, which then
is constant on W = IIZx. For D € D let 1[)D be the unique number with
P(z) = ¥p for all z € D. We define a D x D-matrix M by

Mcp = {eéc if C - D,
0 otherwise.
Since the number of successors of a C € D is bounded by card(W) we get
Y pep Mop < K with K = card(W)|le?|o0 < 0.
For' v € [°°(D) and n > 0 we compute

1" M epvplles = sup | Y Mcpvp| < |[V]leo sup | > M cp|
DeD €D pep Ce€D pep

and choosing v = (1,1,...) we get |[M"|[oo = Supgep |- pep M"cp|. Similarly
we compute for u € {}(D)

1Y ueMoplli < Y lucl| Y M en| < llullisup | - M7cpl.
CeD CeD DeD CeP pep
To see |{|M"||1 = supgcep|d pep M™cp| one has to choose an appropriate
sequence u; of I1(D)-vectors which have one entry 1 and all others 0 such that
sup ||u;M™||; = supgep | 2. pep M™cp| holds.

Hence u — uM is an ! (D)-operator and v — My is an [*°(D)-operator. Both
operators have the same norm, denoted by [|[M||. They also have the same spec-
tral radius denoted by r(M) since r(M) = limsup,,_, ., V/||M"||. Furthermore
logr(M) = p(F, ) holds. This is shown in the same way as Lemma 6 (1) in [12].
Let C C D be the closed and irreducible subset found in Lemma 5.

LEMMA 6: Suppose r(M) > limsup,,_,, 1/ |leSn¥||. Then there are nonnegative
and nonzero v € 1°(D) and u € [}(D) with Mv = r(M)v and uM = r(M)u
and up > 0 and vp > 0 for all D € C where C denotes the irreducible closed
subset of D of Lemma 5.

Proof: Set M, = M|p.p,. Lemma 8 in (8] gives limsup,_, r(M,) <
lim sup,, o /|leS»¥|| and we can find an n > 0 with (M) > r(M,). Now
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the same proof as that of Corollary 1(ii) to Theorem 9 in [6] shows the existence
of nonzero and nonnegative v € {*°(D) and u € [}(D) with Mv = r(M)v and
uM = r(M)u. Observe that ug > 0 implies ug > 0 for all B € D which are
met by a path in D starting in A. Similarly v4 > 0 implies vg > 0 for B € D
whenever there is a path starting in B which meets A. Choose C € D with
uc > 0. Since there is a path from C to every element D of C we get up > 0
forall D e C. If ve > 0 for a C € C then vp > 0 for all D € C follows and the
Lemma is proved. Suppose vp = 0 for all D € C. In D \C all irreducible subsets
consist only of a single closed path. Denote the set of these single closed paths
by 8. If vp = 0 for all D € C this implies

3=

n~1
(M) <limsup <sup{H Mc,c,,,: C1 = --- — Cy is in an element of S})

—>00 .
n i=1

<limsup {/||e5~¥]|.
n—ro0

The last inequality holds since for every n > 0 and every path C; — --- = C,
of length n there is an z € P with T%(z) € C; for 1 <i < n. ]

Set G = {...D_1DoDy...: Dy € D and Dy — Dy for k € Z} and denote
the shift transformation on G by S. Then S is bijective on G. Set [C_k...Cp]n =
{...D_1DyD; ... € G: D, = C; for —k < i < n}. Such sets are also written as
—k[C—k ...Cy]. Furthermore we define _x[C_g...] =,50(<k[C=k ... Cy)).

LEMMA 7: Suppose ... - C_y — Cy and ... - D_y — Dy are both infinite
inverse paths in D with the property that C; and D; are subintervals of the same
Z; € W for alli < 0. Then C; = D; holds for all i < 0.

Proof: Set Dy = (a,b) and suppose without loss of generality (see Lemma 1
in [8]) that @ = T™(¢;) and b = T™(¢;) for ¢;,¢; € C and ng > n;. Lemma
1 in [14] gives ﬂi=0 T*D_14;=D_nN ﬂi:l T~*Z_14; where Z_; is the unique
element of W which contains D_;. For [ = ng the sets ()2 T *D_py+: and
NiZo T~*Z_,,+: have that endpoint in common, which is mapped to a and this
property holds for [ > ng since the D_; for ng < j <1 are elements of a path in
D. If | > n; we get that ni:o T-D_;,; and ni:o T—*Z_,4; have that endpoint
in common, which is mapped to b. Here we use Remark 1. Hence we get for
l > ma.x{no, Tll}

1 l
n T_iD_H_i = ﬂ T—iZ_l_H-.

i=0 =0
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The same argument gives the existence of an m € N such that for £k > m we
get ﬂi:o T C_14i = ni:o T—*Z_14+; where again Z_; is the unique element of
W which contains D_; for 0 < j <. Set N = max{n,m}. Since D_; and C_;
are contained in the same Z_; € W and with Lemma 1 of [6] we get

! ! !
Do=TN (YT Doy =TV (YT Z_1yi =TV [ T7*C_1pi = Co.
i=0 =0 1=0
Since this argument can be applied on every C_; and D_; for ¢ > 0 the lemma
is proved. |

LEMMA 8: SupposeV is a generator. Then there is an injective map ¢: G~ N —
X where N is S-invariant and a countable union of sets of the form ,,[ D, . ..] for
anm € Z. Furthermore F¢ = ¢S holds and for 0 € Dy we have ¢[... D_1Dglo C

UIGIoo,a' 1

Proof: For each DD € D we define a set P(D) containing two paths as follows:

Set D = (a,b). There is a unique path D¢D; ... with Dy = D such that
T%(a) is an endpoint of D; for all i > 0 and there is a unique path CoC; ...
with Cy = D such that T%(b) is an endpoint of C; for all 7 > 0. Set P(D) =
{DoD; ...,CoCy.. .}

For ...D_1DoD, ... € G set Bop = II"'Dg and By, = (__, F~*I'D;.
Then By = Fi—1 ﬂf:_l T-G+D D, holds and since D_; ... Dy is a path in D
we get By # 0.

Furthermore we get either (V> Bko = (Yx>o Bro = II 'z for an z € Dy, or
D,Dpyyy... € P(Dy,) for some m > 0. Since V is a generator this x € Dy is
unique. Set

N = { ..D_{DgD;... € G: 3m € Z with DmDm+1 ... € P(Dm)}

Then N is S-invariant and a countable union of sets of the form [Dm .. .].
We have IIBy; = NN.__, F~II"'D; = N__, T*D; = Dy and By41 C Boy

for all [ > 0. Hence we can define ¢: G~NN — X by ¢(...D_1DyD;...) =
M2 Boa N Miczo Br.o-

Suppose now ¢(...C_;CoCy...) = ¢(... D_1DyD; ...) holds for two different
elements of G~ N. Then the assumptions of Lemma 7 are fulfilled and we get
D; = C; for i <0. But now also D; = C; for ¢ > 0 follows because of Lemma 2
in [6] and the injectivity of ¢ on G\ N is proved.

The formula F¢ = ¢S is an immediate consequence of FBy; = Bg_1,441.
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To prove the last assertion we compute

¢l 1Do]0—ﬂBozCﬂﬂF1
1=01=0
where Z; is the unique element of W with D_; C Z;. Hence ¢[... D_1Dg]o is a
subset of an element of Z,, and with II¢[... D_;Dglo = II(,2, Boy = Dy the
proof is finished. |

PROPOSITION 1: SupposeT is topologically transitive and V is a generator. If the
family of maps y — —g%(:c, y) is uniformly Hélder continuous and t € (0, 2), then
an ergodic F-invariant probability measure y on X exists with hy, +t [ odp > 0
and p(Ujez, 1) >0 forallo € E.

Proof: Lemma 4 implies the existence of a function 1/3 which is constant on the
elements of Zx and which fulfills p(F, ¥)—e < p(F, ). Since SUPyer-1p Y(X) <0
holds we compute using the functions and definitions of Lemma 4 and its proof

1 - ~
limsup— sup Spy(x) < limsup 1 sup  Sp(x)

n—oo M xel-1p n—ooo T xenn—1p

<hmsupl sup (Sp¥(x) + 2|[ul|)

n—oo 1 xell-1p

1
=limsup— sup Spi(x) <0
n—ooo T xell-1p

Hence we get

1 -

limsup {/||eS»¥ )| = exp (hm sup — sup Satp(x )) <1< eFE¥) = (M)
n—o0 —oo T xeP

and we can apply Lemma 6 to get v € (*°(D) and u € I}(D) with v¢ > 0 and

ug > 0 for all C € € and Mv = r(M)v and uM = r(M)u. Set 7p = upvp for

D € D where one of them is renormed, such that )., 7p = 1 holds and

MDEVE

Then P is a stochastic matrix and 7P = 7 holds. We get a Markov measure i
on G.

Because of Lemma 8, (X, F, ) and (G, S, /i) with 4 = fi¢~! are isomorphic
dynamical systems (observe that the set A in Lemma 8 is a fi-nullset). Since V
is a generator for T and hence Z is a generator for F on X and since entropy is an
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isomorphism invariant we have h,(F) = h; (S) A similar computation to that
in [16] page 103 gives p(F,¥) = logr(M) = hy(S)+ [oddp = h,(F)+ [P dp.
Since  is F-invariant we get [¢dp < [(¢ —u + wo F)dy = fz[)du and at last

0 < p(F, ) =hu(F)+/d3du§ hM<F)+/wdn.

Choose ¢ € E. Because of the second part of Lemma 5 there is a D € C with
o € D. Then Lemma 8 and Lemma 6 imply u(U;ez_ 1) = 4([D]) = 7p > 0.
|

We again fix a t € (0, 2) and the measure g found in the above Proposition.
LEMMA 9: Suppose V is a generator and the family of maps y + p(z,y) is
uniformly equicontinuous. Set

. 1 .1
G={x € X: lim —logu(1n(x)) = hu(F) and Jim 1og|I(x)nel= [}
Then p(G) = 1.

Proof: The mean value theorem and the chain rule imply

log |I,(x I—Zlogl(9 F~i(z,n))

for an n € I,(x); and z = MIx. For 1 < i < n we observe that F~*(x) and
F~i(z,n) are both elements of F~'I,(X)qp-1x = In-i( F7*X)pp-ix. Choose
¢ > 0 and remember that |I,_;(F~*x)gp-.x] < k" %. Since the maps y ~ ¢(z,y)
are uniformly equicontinuous for each =z € P, there is an ng € N such that
n — 1 > ng implies

lo(F ™ (z,m)) — o(F*(x))| <.

Set C' = |sup ¢ — inf ¢|. Then we get | 327, ¢(F~*(z,n)) — i (F (X))} <
Crngp + (n — ng)e and we compute

1 1« _ Cng (n—mngl
z > - § : i _ _
n log | In (x)nix| > n 4 p(F~*(x)) n n )

1 1 « . Cn n—ng)e
—T;log|In(x)nx| S EZ@(F t(X)) + 0 + ( 0) .

v n n
Taking lim,_,« and using the ergodic theorem for F~! gives

PR |
[ o= < limint ~10g (el < i 1 log ()l < [ odu-+e

n—00
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for almost all x. Since & was arbitrary we get limy_,c0 2 log [In(X)1ix| = [ @ dp
for almost all x.

For the second part of the proof we use the Shannon-McMillan-Breiman
Theorem for F~1. Observe that Z, = {i—o(F!)"'Z; # &: Z; € 2} holds.
Hence we get limp—y 00 — = log p(I(x)) = hu(F 1) = h,(F) for almost all x since
Z is a generator for F. Collecting these results we get u(G) = 1. |

LEMMA 10: Define G as in Lemma 9. Then either I,(x)NG = 0 or Io(x)NG =
Io(x) for all x € X.

Proof: Suppose x € Io(x) N G. Choose a 'y € Io(x). We have I,(y) = I,(x)
for all n > 0. Hence limn 0o —2 log pu(In(y)) = hyu(F) follows.

Choose £ > 0. Since the maps y — ¢(z,y) are uniformly equicontinuous for
each z € P and because of the second part of Lemma 3 there is an ng € N such
that |o(x) — ¢(y)| < € holds for x and y in the same element of Z,, ,,. Since
F~4(x) and F~(y) are elements of the same Z;; for i > 0 we get by a similar
computation as in the proof of the above lemma even with the same constant C

1 1« i 2Cn, n— 2ng)e
~log|Ln(y)ny| > ~ > @(F~*(x) - n“—( 23

; n
i=1
207’7,0 (n - 2TLO)6
—z
log | I (¥)ny| < = Z o(F - + - .
Taking lim,,_, finishes the proof since € > 0 was arbitrary. |

For a subset S of X, let U(e,Z,,S) be the set of all finite or countable covers
of S by sets of the form I NTI~ ¢ for I € Z, with diameter less than or equal to
e. Define

t — 3 B —
mz,(8) = lim Ceugg’s);m and HDz,(S) = inf{t: v, 1, (S) = 0}.

This is well-defined since lim, o |[In(X)nx| = 0. A similar definition was first
used in [9]. We will use the following property of H Dz_ which is also proved there:
If S C X, for k > 0 and S = (J;5 Sk then HDz, (S) = SUPk>o HDz, (Sk).
Furthermore the usual Hausdorff dimension and H Dz, do not differ on subsets
of G, which is shown by the following lemma.

LEMMA 11: Let S C G,. Then HD(S) > HDz,(S).
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Proof: Set [ pdu = ® and fix € > 0 such that ® + 2¢ < 0 still holds (remember
[ dp < 0). Similarly as in the proof of Lemma 9 we get for y € S

|1(0,9)o > exp (Z P(F(0,9)) — Cno — (n = no)s) :

=1

[n(o,y)o| < exp (Z P(F~*o,y)) + Cno + (n — no)8> ~
i=1

Since (0,y) € G we find a constant M(y) > 0 such that M(y)~le?(®-28) <
(0, 9)s| < M(y)e™®+2) holds. Set S,, = {y € S: M(y) < m}. Then S,,, C
Sm+1 and |J,,5; Sm = S.

Let Uy be a cover of Sm by open intervals with length less than or equal
to 9. Fix U € Uy and let n be minimal such that |I,(o,y)s| < |U|. Then
I_1(0,9)s] > |U]. With N = me~(®+2) > 0 we get m~1e™(®2) < U] <

Nen(<I>+26) and

|In——1(av y)0| S mNe4"E.
[In(0,¥)o]

Hence we can compute
1
[In(0,9)o| > —Ne‘4"E|U| > (|U[1-te/ (@+20)
m

with ¢ = g N*/(®+2) since n < 55 log ‘5 iy
Two dlfferent I,(o,y) are disjoint or one contains the other. Hence we can
find a cover Oy of U N Sy, by disjoint I,,(o,y) constructed above. We have

> reo, I < 3|U| since [I| < U] for all I € Oy. We get

card(Oy) < 3|U|%|U|—1+4€/(‘P+2€) — %|U|4s/(q>+2e)

and
Z |I|t < §IU|t+4E/(¢+2E).
IeOy ¢

With this estimate for all U € U we get for O = | ), Ov

Z Uit S § Z |U|t+45/(¢+2€) and "z, (Sm) S §Vt+45/(d>+2fs) (Sm)
c c
IeO vel
Set C(e) = 3/c and D(e) = 4¢/(® + 2¢). Then C(¢) > 0 and D(e) < 0 and
lim.,0 D(¢) = 0. Then HD(S,,) > HDz (Sn) follows. Otherwise one could
find t < HDz,(Sp,) and € > 0 such that HD(Sy,) < t + D(¢) < HDz1, (Sn)
holds. Then v; 1, (Sm) £ C(€)V44D(e) (Sm) = 0 would follow, a contradiction.
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Since m € N was arbitrary the desired result follows. |

We now prove that z is also a lower bound for HD(X,). With Lemma 2 this
gives the

Proof of Theorem 1: It remains to prove z < HD(X,) for ¢ € E if z >
0. So choose an arbitrary t € (0,2) and let x4 be the measure constructed in
Proposition 1 with h +tf¢pdu > 0 and #(Urez,, 1) > 0 for 0 € P. This
implies t < h,( f @du) since [@du < 0. Let G be defined as in Lemma
9. With Lemma 11 we get HDI (G )< HD(G,) < HD(X,) for o € E. Hence
the missing step is to prove h,(F)/(— [ ¢du) < HDz,(G,).
To do this observe that we have
- og (I (o y)) hu(F)
neo log|In(0,y)s]  — [dp
Furthermore Uiezm,af nG = Uyeca Io(0,y) because of Lemma 10 and
wUrez., , ING) = u(Ujez., , I) > 0 since G has measure 1.
Choose 9 > 0 arbitrary and define

hu(F) log u(In(0,y)) }
Sz{ € Gy: —& —9< foralln > k3.
=V —[pdu log |I(0,y)e|
Then Si C Sk+1 and G, = Ukzl Sk holds. Hence we get
Jim p( | Too(0,9)) = (| Teo(o,9)) > 0

yesk yeGa

for (0,y) € G,.

For all n > k we have
hp(F)

(Lo )le) 7% " 2 ullalo, ).

Choose kg large enough, such that /"(Uyesko I.(a,y)) > 0 holds. For all ¢ <
minyes,, [Tk, (0,Y)o| we get for B € U(e, L,, Sk,)

hu(F)
S5 3w 2w Telonn)) >0

IeB IIEIE? y€Sk,
and ho(F)
HD ; S ) > L —
Z ( o) _prdM
follows. Since ¥ was arbitrary and S, C G, we get
hu(F)

HDz,(Gs) 2

- [edu
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4. The formula for HD(X)

We give the proof of Theorem 2 here. There is a general theory for any Borel
subset of R™, which connects the Hausdorff dimension of the whole set and the
Hausdorff dimension of vertical intersections. We refer to Corollary 7.12 in [1]
to obtain HD(X) > z + 1. The reverse inequality needs a different, but similar
calculation as in the proof of Theorem 1. Furthermore we need some information
about the geometric form of the I € Z,, for an n > 0.

LEMMA 12: Suppose that the assumptions of Theorem 2 are fulfilled. For I € 7,
and n > 0 set d(I) = sup,cny|l,|. Then there is an integer A and a covering
U(I) by squares with sidelength d(I) such that card(U(I)) < A/d(I) holds for
each I.

Proof: Choose an arbitrary I € Z,, for an n > 0. Lemma 5 in [15] shows that
the boundary of I consists of two vertical lines and two differentiable functions.
Denote the supremum of the absolute value of the slope of these two functions
by s(I). Set infyefo,1)|T'2| = E > 1 and remember that we have set k :=
sup |0g/dy|. Then the proof of Proposition 2 in [15] shows that there is a C < oo

such that
n+1 k i
n<c -1 .
=% (8

Since k/E < 1 we get

Let J be an interval in [0, 1] with length d(I). Then I NII"1J is contained in a
rectangle J x K with |K| < d(I) + 2|J|S(I). Let A be the least integer greater
than 1 + 2S(I). Then I NII~1J can be covered by A squares with sidelength
d(I). Since |I1I] < 1 we get that I can be covered by Aﬁ squares of sidelength
d(I) and the proof is finished since A is independent of the choice of I. 1

Proof of Theorem 2: For I, € T, set Z, = F™™"I, and v = (T"|nz,) " (0).
Then the chain rule gives

n—1 ag )

Lol < sup T |[22(Fi).
e x€ll~1p 1];!) ay

We furthermore get

n—1

dg . .
d(I,) = sup |I.,| < su l— F‘x‘
()= g Vel < st T |57
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since o € I, is equivalent to v € 11Z,,.
Fix ¥ € (0,1) arbitrarily. Then there is an ng such that d(I,,) < 9/+/2 for all
I, € T,, with n > ng, since

éj
8—‘;(x)| <k<1 forallx.
Of course | J; o7 I, covers X. For I, € I,, let U(I,) be the cover of I, found

in the above Lemma 12. Then (J; o; U(I,) is a cover of X by subsets with
diameter less than or equal to 9.

Choose t > z + 1. Then we get using Lemma 12

na(X)< Y Y (@) Ve

1.€T, UeU(l,)

<V2' Zd([ (In)*

In€In
<A\/— exp | (t—1) su lo ‘ Fz ’

= Aﬁ’pnw, (t - 1)p)

for all n > ng. Since t — 1 > z we have p,(F, (t — 1)p) < 1 for large n. Therefore
v, 9(X) < Av2'. Hence (X)<ocoholdsforallt >2+1and HD(X) <z+1
follows. |
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