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A B S T R A C T  

A class of transformations on [0, 1] 2, which includes transformations ob- 
tained by a Poincare section of the Lorenz equation, is considered. We 
prove that the Hausdorff dimension of the attractor of these transforma- 
tions equals z+ 1 where z is the unique zero of a certain pressure function. 
Furthermore we prove that all vertical intersections with this attractor, 
except of countable many, have Hausdorff dimension z. 

1. I n t r o d u c t i o n  

One of the best  known differential equations which exhibit chaotic behavior is the 

Lorenz equat ion (see [3]). Using a Poincare section one can reduce it to  a discrete 

t ime dynamical  system on [0, 1] 2. This dynamical  system is qualitatively the same 

as the t ransformat ions  given by F(x ,  y) = (T(x) ,  g(x, y)) where g(x,  .): [0, 1] --+ 

(0, 1) is a contract ion for each x e [0, 1] and T:  [0, 1] -+ [0, 1] is piecewise strictly 

increasing with two monotone  pieces. 

We use a slightly more general definition. A t ransformat ion F :  [0, 1] 2 --+ [0, 1] 2 

is called a two dimensional Lorenz t ransformat ion if F(x ,  y) -- ( T ( x ) , g ( x , y ) )  

where: 

(1) T: [0, 1] -+ [0, 1] is piecewise monotonic.  This means, tha t  there are c~ E 

[0,1] for 0 < i < N with 0 = co < . . .  < CN = 1 such tha t  TI(c~,c~+l) is 

continuous and strictly monotone  for 0 _< i < N.  
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(2) g: [0,1] 2 --~ (0,1) is C 1 on P x [0,1], where P = [0,1] \U0<i<NCi.  

~-hrthermore we suppose sup IOg/Ox[ < ec, sup [Og/Oy I := k < 1 and 

inf [Og/Oy[ > O. 
(3) F((ci,ci+l) x [0,1])M F((cj,cj+l) x [0,1]) = 0 for distinct i , j  with 

O<_i , j<N.  
Denote the projection to the x-axis by II and set X = N~=-o~ F n ( H - 1 p )  . 

Then X is the at tractor for all orbits under F,  which start in a point x C I I - 1 P  

and such that  F n x  E I I - 1 p  for all n _> 0. Observe that  F is invertible on X. For 

a C [0, 1] and a subset A of [0, 1] 2 denote the vertical intersection ANII - la  by A~ 

and the Hausdorff dimension of A by HD(A). The aim of this paper is to prove 

that  the Hausdorff dimension HD(X~,) of a vertical intersection X~ for a E [0, 1] 

equals the unique zero z of the function t ~+ p(F, t~) with ~ = log [Og/OYl. 
Furthermore we will show HD(X) = z + 1. 

Such results are known for one dimensional dynamical systems, for axiom A 

diffeomorphisms and for self affine sets. In [12] it is shown that  HD(X) equals the 

unique zero of t ~ p(T ix, - t  log I T'I) if T is an expanding piecewise monotonic 

transformation on [0, 1] and X is a completely invariant subset of [0, 1]. This is 

also proved in [5] with slightly more general assumptions. In [10] one finds the 

same formula as we prove in Theorem I, but for an axiom A diffeomorphism. In 

[13] a non-invertible map semiconjugate with a finite shift is considered and the 

same formula as in Theorem 2 is obtained. For the self affine case see the books 

of Falkoner ([1], [2]) and Pesin ([11]). 

Remark 1: The points ci E [0, 1] for 0 < i <: N are called critical points. Set 

C = {ci: 1 <: i < n}. For x e [0, 1) set T~_(x) = limy..~x Tn(y) and for x e (0, 1] 

set T_~(x) = l imy/~ T~(y). 
We can always declare finitely many additional points to be critical to get the 

following property of C: 

(1) If T~(c~) = T~(cj) and Ta(ci),Tb(cj) • C for some a,b e { + , - } ,  

k,l >_ 0 and ci,cj e C then either min{k,/} = 0 or T~-r(ci) = T~-r(cj) 
for 1 < r < min{k, l}. 

(2) If ci = T~(cj) and T~(cj) r C then l = 0 and ci = cj. 

It is shown in [8] that  these properties can be achieved by declaring finitely many 

additional points to be critical. We need this property to prove Lemma 7 below. 

Set V = {(c~,ci+l): 0 _< i < N} and Z = H-1)2. In our situation the following 

definition of pressure will be useful. Let f be a bounded and piecewise continuous 

function, that  means f l z  is continuous for Z E Z. Set Zn = V$=0 F - i Z  and 
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S J ( x )  n-1 = ~ = 0  f (F~x)  �9 Then we define pn(F, f )  = ~ z e z ~  sup~ez eS~](x) and 

p(F, f )  = lim,~_~ ! logpn(F, f ) .  The limit in the above definition exists, since 
n 

pn+k(F, f )  <_ pn(F, f)pk(F, f )  holds (see [16]) and since f is bounded. Set E -- 

~ = o  T-~P" This is the set of points x C [0, 1], for which all iterates of T stay in 

P.  The exact results are: 

THEOREM 1: Let F be a two dimensional Lorenz transformation. Suppose T 

is topologically transitive and V is a generator for T. I f  the family of maps 

y ~-~ Og/Oy(x, y) is uniformly H61der continuous, then t ~-~ p(F, t~) has a unique 

zero z and HD(X~)  = z holds for all a E E. 

We say the transformation T: [0, 1] ~ [0, 1] is expanding i fT]y  is C ~ for Y C Y 

and inf [T~[ > 1. 

THEOREM 2: f f  the same assumptions as in Theorem 1 hold and if additionally 

T is expanding, then H D ( X )  =- z + 1. 

2. T h e  u p p e r  b o u n d  for  H D ( X , )  

We begin with the proof of the desired properties of the pressure function. 

LEMMA 1: Suppose F is a two dimensional Lorenz transformation. Then the 

map t ~ p( F, t~) is continuous, strictly decreasing and tends to -oc  for t ~ c~. 

Hence there is a unique zero z >_ O. 

Proof: Set ? -- - supxen-~ P ~(x). Then ? > 0 since sup IOg/Oyl < 1 holds. For 

0 ~ t < 8 we get s~ -- t~-k (s - t)~ < t ~ -  (s - t)% With the same proof as in 

[16] this implies 

p ( F ,  < p ( F ,  - ( s  - 

This inequality proves that t ~-~ p(F, t~) is strictly decreasing. Since 

0 <_ p(F, 0) = lim -1 logcard(Z,~) < card(Z) < c~ 
n - + o o  n 

holds, we also get limt_.~ p(F, t~) = - ~ .  

The continuity of the map t ~ p(F, t~) follows immediatly from the well-known 

formula [p(F, f )  - p(F, g)l -< Ill - gll~ for bounded functions f and g (see [16]). 
| 

We already can tackle the proof that the unique zero z of t ~-~ p(F, t~) is an 

upper bound for HD(X~)  for a E E. Similar arguments are given in [10] and [12]. 

For a subset A C_ [0, 1] 2 we denote the diameter of A by [A[. Denote the set of all 
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finite or countable covers of A by intervals with diameter less than vq by b/(A, 0) 

and set t~t,o(A) = infceu(A,O ) ~~cec [C[ t" Then tit(A) = limo--+o r't,~(A) is called 

t-dimensional Hausdorff measure, where the limit exists since ut,o is increasing 

when # is decreasing but might be oc. Set Zn = FnZn for n _> 0 and observe 

that  X C_ ~,~_o U1~z. I holds. 

LEMMA 2: Let F be a two dimensional Lorenz transformation and choose a E E. 
Then HD(X~) < z. 

Proof: For n _> 0 choose I E Zn with a E HI.  Then Z1 := F - n I  is an element 

of Zn. Since T n is invertible from VI := HZI  --+ H I  there is a unique 7I E V/ 

with T'~/I  = a. From the mean value theorem and the chain rule we obtain the 

existence of a ~ E [0, 1] with 

n--1 

/=o Y 

Fix an arbi t rary # E (0, 1). Then we find an n, such that  IIzI < ~? for all I E Zn 

since sup IOg/Oyl = k < 1 holds. 

Choose t > z. It  is clear that  U / c z ,  I~ covers X~. Hence 

(n-i~ ~ Og/Oy(Fi(~, ) a,~(x~) _< ~ II~1 t _< ~ sup exp t log y)) 
1EZn IEZn yE[0,1] .= 
~EYII aEIIl  

) < ~ sup sup exp t~--~log Og/Oy(Fi(x,y)) 
x e V i  ye[O,1] I E Zn i : O  

t*EFII 

-< E sup e t&~(x) = pn(F,t~o). 
Z E Z .  x E Z  

To show HD(Xo) < t it suffices to show that  vt(X~) is bounded. We know that  
1 -~ logp,~(F, tqo) converges to p(F, tqo), where p(F,t~) < 0 holds because of the 

choice of t > z. Hence p~(F, tqo) tends to zero and is bounded. We conclude that  

ut,o(X,) is bounded for all v 9 > 0. Hence ut(X,) is bounded for all t > z and 

HD(Xa) <_ z follows. I 

Observe that  the definition of F implies IIZ,~ -- )2,~, where ~2~ is defined by 

Vn = V~_0 T - i l L  Hence htov(T) = p(F, O) follows, where htop(T) denotes the 

topological entropy of the one dimensional dynamical system ([0, 1], T). 

Remark 2: If z = 0 then HD(X, )  = z is already shown. Hence we will assume 

z > 0 during the rest of this paper. With Lemma 1 this implies htop(T) > O. 
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3. T h e  lower  b o u n d  for  H D ( X ~ )  

We fix a t  E (0, z) and set r = t~. T h e n p ( F , r  > 0 and we can choose an 

> 0 such that  p(F, r - 2~ > 0 holds. We now use also the two sided parti t ion 
k Zk,t = Vi=-Z FiZ"  All three families of sets Zk, Zl and Zk,t are parti t ions of X 

and for x E X we denote the unique element of the partition which includes x 

by Zk(x), Iz(x) and Zk,t(x). 

LEMMA 3: Suppose l; is a one sided generator for T. Then Z is a two sided 

generator for F on X .  Furthermore for all 6 > 0 there is an n(6) such that 

IVI _< 6 for a11 V E ];n(~) and ]Z I <_ 6 for all Z E Zn(~),n(~) holds. 

Proof." To prove the first assertion choose x r y E X. If Hx r Hy the assertion 

is trivial. I f H x  = Hy there is an n > 0 w i t h  In(x) N I n ( y )  = ~ s i n c e g i s  a 

contraction on every vertical line and it follows that  Z is a generator. 

The proof of the second assertion is standard. I 

LEMMA 4: Suppose the family of maps y ~-~ ~ (x, y) is uniformly H61der contin- 
Y 

uous and V is a generator. Then there is a function r [0, 1] 2 ~ II( and an N C N 

such that r  is constant for Z �9 ZN and p(F, ~b) < p(F, r < p(F, ~) + ~. 

Proof." Since the family of maps y ~-+ c~ is uniformly Hhlder continuous 

and IcOg/cOyl is hounded away from 0 and co also the maps y ~-+ ~b(x,y) are 

uniformly Hhlder continuous for each x �9 P. Set s(x) = (Hx,0) for x �9 H - 1 p  

and 

=  (FJx) - r  

j=0  

Since [F/(x)  - FJ(s(x))[ <_ kJ[x - s(x)[ ~ k j holds, we get [un(x) - Um(X)l < 

c~-~.~._m+l(kO) j for a c > 0 and an a > 0. Hence u(x) = lim,~-.or un(x) exists 

and is continuous on Z for Z �9 Z as a uniform limit of continuous functions. 

Furthermore u is bounded. 

Set ~ = r - u + u o F.  Then p(F, ~) = p(F, ~b) follows by the definition of 

pressure and we compute 
OO 

= r  - - 

j=O 
O 0  

H- Z ~b(FJ+lx) - r  
j=O 

O 0  

- - r  - Z r  - r  
j=o 
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Since s (Fx)  = s(Fs(x))  the above equation proves that  r is constant on vertical 

lines. Furthermore r is continuous on the elements of Z and bounded. Hence we 

find with use of Lemma 3 an N E l~l such that  [[r - ~-~ZeZN XZ infx~z r < 

r Set r = Y~zezN Xz infxez r  then the two assertions of the lemma are 

fulfilled. I 

Set Zoo = {N,~>_0 In # 0: In E Zn} and for a E P set 

Z ~ = { I : I E Z n f o r s o m e n _ > 0 a n d a E H I }  

and 

Zoo,~ = {I  E Zoo: a �9 H/}.  

We will use the function r constructed above to find an ergodic F-invariant  

measure # on X with #(UiEzoo, I) > 0 for all a �9 E and h~,(F) + t f q o d #  > O. 
For the construction of this measure we have to introduce the Markov diagram 

over 142 of the one dimensional dynamical system ([0, 1], T), where 142 is a finite 

parti t ion refining 12. This concept is due to Hofbauer (see [6] and [7]). 

For an open subinterval D of a Z0 �9 142 the nonempty intervals among T(D)MZ 

for Z �9 142 are called successors of D. We write D .4 C if C is a successor of 

D. All successors of a D are again open subintervals of a Z1 E 142 since T is 

piecewise monotonic. Hence building successors can be iterated. 

Set :Do = 142 and define 13i = 13i-1U {D: 3C �9 13i-1 with C .4 D}. Then all 

the 13i are finite sets since card(W) < oo and each D �9 13~-1 has not more than  
oo D card(W) successors. Hence 13 = Ui=0 i is at most countable and we call the 

oriented graph (13, .4) with arrows C .4 D, if D is a successor of C, the Markov 

diagram of ([0, 1], T) over 14]. 

A finite or infinite sequence DoD1 ... with Di �9 13 is called a path  if Di-1 .4 Di 

holds for i > 0. A subset C C_ 13 is called closed, if D �9 C and D -4 C imply 

C �9 C. It  is called irreducible if, whenever C �9 C and D �9 C, a path  leads from 

D to C and no subset of 13 which contains C has this property. 

LEMMA 5: Suppose that T is topologically transitive, htop(T) > 0 and 12 is a 

generator for T. Then there is an irreducible dosed subset C C 13, such that 

all irreducible subsets of 13 \ C consist only of a single closed path and for all 

D �9 13 \ C there is a path starting in D, which leads to C. Fbrthermore there is 

a finite subset ,4 C_ C with UDE.A. D = [0, 1]. 

Proo~ Since 12 is a generator and 142 refines 12 also 142 is a generator. This, and 

the first and the second assumption of the lemma are used to prove the first part  

of the result. See [4] for a detailed proof. 
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For the second part we use Theorem 10 in [6]. It states that there is a finite set 

.A C C with  UDE.A D = UDEC D. The two infinite sets appearing in this theorem 

are empty, since )4; is a generator. Since C is closed and T is topologically 

transitive we get UDEC D = [0, 1]. I 

Remember that  the function ~ constructed in Lemma 4 is constant on the 

elements of ZN. We can conceive r as a function in one variable, which then 

is constant on 14; := IIZN. For D E 79 let CD be the unique number with 

r  = ~ 9  for all x E D. We define a 7) • 7)-matrix M by 

{ e  ~c if C ~ D, 
MCD = 0 otherwise. 

Since the number of successors of a C E 79 is bounded by card(W) we get 

~DE/)McD < K with K = card(W)ller < oo. 
For 'v  6 1 ~176 (7)) and n > 0 we compute 

II ~ MnCDVDII~ = sup l ~ MnCDVDI <--Ilvll~ sup l ~ MncDI 
DE/) CE/) DE/) CE/) De/) 

and choosing v = (1, 1 , . . . )  we get IIM'~lloo = supvE/)I ~De/)M'~CDI.  Similarly 

we compute for u E 11(7)) 

II Z UCMnCDII1 <- ~ lUCI I Z MncDI <- I[ulll sup I Z MnCDI" 
CE/) CE/) DE~) CE/) De/) 

To see IIM"II1 -- SUPcE/)I~DE/)MncDI one has to choose an appropriate 

sequence ui of/1(7))-vectors which have one entry 1 and all others 0 such that  

sup IluiM'~[[x = SupcEv I EDE/) M~CDI holds. 
Hence u --+ u M  is an/1(7))-operator and v -~ M y  is an/~176 Both 

operators have the same norm, denoted by I IMII. They also have the same spec- 

tral radius denoted by r (M)  since r (M)  = limsup,~_.o o V~M~II. Furthermore 

logr(M) = p(F,~) holds. This is shown in the same way as Lemma 6 (1) in [12]. 

Let C c_ 79 be the dosed and irreducible subset found in Lemma 5. 

LEMMA 6: Suppose r (M)  > l imsup .~o  o ~t les~ l l  . Then there are nonnegative 
and nonzero v E I~176 and u E /1(7)) with M v  = r ( M ) v  and u M  = r ( M ) u  

and UD > 0 and VD > 0 for ali D E (J where C denotes the irreducible closed 
subset ofT) of Lemma 5. 

Proof: Set M,~ = MI/) . . / )  . .  Lemma 8 in [8] gives l imsupn~oor(Mn ) < 

limsup,~_,~ ~//lieS-'~l] and we can find an n >_ 0 with r (M)  > r(M,~). Now 
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the same proof as that  of Corollary l(ii) to Theorem 9 in [6] shows the existence 

of nonzero and nonnegative v e 1~(7)) and u �9 11(7)) with M v  = r ( M ) v  and 

u M  = r ( M ) u .  Observe that  UA > 0 implies u s  > 0 for all B �9 7) which are 

met by a pa th  in 7) starting in A. Similarly VA > 0 implies VB > 0 for B E 7) 

whenever there is a path starting in B which meets A. Choose C �9 7) with 

u c  > 0. Since there is a path  from C to every element D of C we get UD > 0 

for all D �9 C. If v c  > 0 for a C �9 C then v o  > 0 for all D �9 C follows and the 

Lemma is proved. Suppose VD ---- 0 for all D �9 C. In 7) \ C all irreducible subsets 

consist only of a single closed path. Denote the set of these single closed paths 

by $.  If vD = 0 for all D �9 C this implies 

r ( M )  <_limsup s u P { I I  Mc ,  c~+I: C1 ~ - ' -  -+ Cn is in an element of,q} 
n - + c ~  i = 1  

_< lim sup ~lleS~r 
n--~oo 

The last inequality holds since for every n _> 0 and every path C1 ~ . . .  ~ C,~ 

of length n there is an x �9 P with Ti(x)  C Ci for 1 < i < n. | 

Set ~ = {. . .  D-1DoD1 .. .  : Dk E 7) and Dk --+ Dk+l for k �9 Z} and denote 

the shift t ransformation on G by S. Then S is bijective on G. Set [C-k . . .  C~]~ = 

{. . .  D-1DoD1 .. .  C G: Di = Ci for - k < i < n}. Such sets are also written as 

- k [ C - k . . .  Cn]. Furthermore we define -k[C-k . . . ]  = ~ n > 0 ( - k [ C - k . . .  Cn]). 

LEMMA 7: Suppose . . .  -4 C-1 -+ Co and .. .  --+ D-1 --+ Do are both infinite 

inverse paths in 7) with the property that Ci and Di are subintervals of the same 

Zi �9 W for all i <_ O. Then Ci = Di holds for all i <_ O. 

Proof: Set Do = (a, b) and suppose without loss of generality (see Lemma 1 

in [8]) that  a = Tn~ and b = Tnl(cj)  for ci, cj E C and no > nt .  Lemma 

1 in [14] gives ~i=o T-iD-z+~ = D- t  n Ali=l T-~Z_z+i where Z_j  is the unique 
no element of W which contains D_j .  For l = no the sets Ni=o T- iD-no+i  and 

no ~i=o T- iZ-no+i  have that  endpoint in common, which is mapped to a and this 

property holds for l >_ no since the D_j for no _< j _< l are elements of a path  in 

7). If I _> nl  we get that  ~i=o T - i D - l + i  and Nl~=o T-~Z_l+i have that  endpoint 

in common, which is mapped to b. Here we use Remark 1. Hence we get for 

l _> max{n0, nl } 
1 l 

= N T-iZ-l+ 
i = 0  i=O 
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The same argument gives the existence of an m �9 N such that  for k >_ m we 
l l 

get Ni=o T-iC-z+i = Ni=o T-iZ- l+ i where again Z_j is the unique element of 

W which contains D_j for 0 _< j < I. Set N = max{n,m}.  Since D_j and C_j 

are contained in the same Z_j �9 1IV and with Lemma 1 of [6] we get 

I I l 

Do = T N ~'~ T - i D _ l + i  = T N f'~ T-iZ_l+i = T N ~'~ - i  T C-l+i = Co. 
i=0 i=0 i=0 

Since this argument can be applied on every C-i and D-i for i _> 0 the lemma 

is proved. I I  

LEMMA 8: Suppose V is a generator. Then there is an injective map r G "- Af --+ 

X where Af is S-invariant and a countable union of sets of the form m[D . . . .  ] for 

an m �9 7,. Furthermore Fr = r holds and for a �9 Do we have r  D-1Do]o C_ 

U/ez~,o I. 

Proof: For each D � 9  we define a set 73(D) containing two paths as follows: 

Set D = (a,b). There is a unique path DoD1... with Do = D such that  

Ti(a) is an endpoint of Di for all i _> 0 and there is a unique path  CoC1... 

with Co = D such that  Ti(b) is an endpoint of Ci for all i _> 0. Set "P(D) = 

{ D o D 1 . . . , C o C 1 . . . } .  
k 

For . . . D _ I D o D 1 . . .  �9 G set Bo,o = I I -1Do and Bk,l = Ni=-zF-iII-1Di" 
Then Bkt  = F lH -1 k , N~=-l T-(i+ODi holds and since D - i . . .  Dk is a path  i n / )  

we get Bk,l ~ O. 

Furthermore we get either Nk>o Bk,o = ~k>o Bk,o = I I - l x  for an x �9 Do, or 

DmDm+l ...  �9 7~(Dm) for some m >_ 0. Since V is a generator this x �9 Do is 

unique. Set 

AI'= {...D_IDoD1 . . .  E G: 3m e Z with DmDm+l...  �9 P(Dm)}.  

Then Af is S-invariant and a countable union of sets of the form miD . . . .  ]. 
o -i -1 = Ni=-lT- iDi  = Do and Bo,l+l C_ Bo,l We haveI]Bo, l  = I I N i = _ l F  H Di o 

for all I > 0. Hence we can define r ~ ' - A f  --+ X by r  = 

NZo B0,~ n f3k%0 Bk,0. 
Suppose now r  C-1COC1...) = r  D-1DoD1...) holds for two different 

elements of G \ N .  Then the assumptions of Lemma 7 are fulfilled and we get 

Di = Ci for i _< 0. But now also Di = Ci for i > 0 follow8 because of Lemma 2 

in [6] and the injectivity of r on G \ Af is proved. 

The formula Fr = r is an immediate consequence of FBk,t = Bk-l , l+l .  
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To prove the last assertion we compute 

f i  oo l 
r  D-1Dolo = Bo,l C N N Fi Zi 

/ = 0  / = 0  i = 0  

where Zi is the unique element of 14; with D_~ C_ Zi. Hence r D-1D0]0 is a 
�9 o o  B subset of an element of Zoo and with H e [ . . D - 1 D 0 ] 0  = HNt= 0 o,t = Do the 

proof is finished. I 

PROPOSITION 1: Suppose T is topologically transitive and V is a generator. If the 
family of maps y ~-~ ~ (x, y) is uniformly H61der continuous and t E (0, z), then 
an ergodic F-invariant probability measure # on X exists with h, + t f ~ d# > 0 
and #(U1ez~. .  I)  > o for all a E E. 

Proo~ Lemma 4 implies the existence of a function r which is constant on the 

elements of ZN and which fulfills p(F, r  _< p(F, r Since SUPxEll-1P r  < 0 

holds we compute using the functions and definitions of Lemma 4 and its proof 

1 
l i m s u p -  sup Snr  I sup She(x)  

n - + o c  n x E H - 1 p  n--~oo n x E H - i p  

1 
_< l i m s u p -  sup (She(x)  + 2llull) 

n - ~ o o  n x E H - i p  

1 
= l i m s u p -  sup S,~r < 0. 

n--~oo n x E H - x p  

Hence we get 

limsup ~/ileSn(P]i =exp (limsup 1 ~ ) 1  e p ( F ' r  r (M)  n-+oo \ ,~-~oo n supSnr  < < = 

and we can apply Lemma 6 to get v E looCD) and u E 11(/)) with v c  > 0 and 

u c  > 0 for all C E C and M y  = r ( M ) v  and u M  = r (M)u .  Set 71" 9 ---- U D V D  for 

D E 7:) where one of them is renormed, such that ~~DeD ?tO ---- 1 holds and 

M D E V E  
P O E  - -  - -  

r(M)VD 

Then P is a stochastic matrix and 7rP = ~r holds. We get a Markov measure/2 

o n  ~ � 9  

Because of Lemma 8, (X, F, #) and (G, S, fi) with # -- /2r -1 are isomorphic 

dynamical systems (observe that  the set A f in Lemma 8 is a ft-nullset). Since Y 

is a generator for T and hence Z is a generator for F on X and since entropy is an 
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isomorphism invariant we have hu(F) = hf~(S). A similar computat ion to that  

in [16] page 103 gives p(F, ~) = log r(M) = ho(S) + f ~ o r dB = h.(F) + f ~3 d.. 
Since # is F-invariant  we get f r d# _< f(~b - u + u o F)  d# -- f r d# and at last 

O<p(F.&)=h.(F)+ f &du<h.(F)+ f ca~. 
Choose a E E. Because of the second part  of Lemma 5 there is a D E C with 

a E D. Then Lemma 8 and Lemma 6 imply #(Ulez~.~ I) >_ fi([D]) = 71 0 > 0 .  

| 

We again fix a t E (0, z) and the measure # found in the above Proposition. 

LEMMA 9: Suppose V is a generator and the family of maps  y ~-4 qp(x, y) is 

uniformly equicontinuous. Set 

G = { x  E X: lira - - 1  log#(In(x))  = h•(F) and 
n - - + ~  n 

Then #(G) = 1. 

lim 1 loglln(x)ri~l f d,t 
n--+ oo n 

Proof: The mean value theorem and the chain rule imply 

i = 1  

for ant1  E In(x)x a n d x  = IIx.  For 1 < i < n we observe that  F - i ( x )  and 

F - i ( x ,  rj) are both  elements of F-iIn(X)nF-,x = I~_i(F-iX)nF-~x. Choose 

e > 0 and remember  that  IIn_i(F-ix)iiF-,x[ < k n-i. Since the maps y ~-4 ~o(x, y) 

are uniformly equicontinuous for each x E P,  there is an no E N such that  

n - i > no implies 

I~(f- i (x .~))  - ~(F-i(x))l  < ~. 

Set C = I sup~o - inf~[. Then we get [ ~i~=1 ~o(F-~(x,~?)) - ~ = 1  ~ ( F - i ( x ) ) t  -< 

Cno + (n - no)~ and we compute 

I log IZ~(x)nxl > 1 ~ .  Cno (n- no)e - _ - ~ ~ ~  , 
n n n n 

i----1 

1 1 @ Ca0 ( n -  n0)~ 
- l o g  ] I . ( x ) n ~ [  < 2_. n - n ~ ( F - i ( x ) )  + - -  + n n 

i = l  

Taking l i m n - ~  and using the ergodic theorem for F -1 gives 

f ~ o d # -  e _ l iminf i log i i . (X)nx [ _< l imsup -1 log [In(x)rix[ <_ f ~od# + e 
J n---+oo n n---+ec n J 
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for almost all x. Since E was arbitrary we get lim,~__~ ~ log IZn(x)rixI = f ~dp 
for almost all x. 

For the second part  of the proof we use the Shannon-McMillan-Breiman 

Theorem for F -1. Observe that  Zn = {N~=o(F-1)-iZi ~ O: Zi E Z} holds. 
1 Hence we get l imn- ,~  - ~  log #(In (x)) = h , ( g  -1) = hu(F ) for almost all x since 

Z is a generator for F. Collecting these results we get #(G) = 1. I 

LEMMA 10: Detlne G as in Lemma 9. Then either Ion(x) n G  = O or Ioo(x) n G =  

Ioo(x) for all x E X.  

Proof: Suppose x E Ioo(x) N G. Choose a y E Ioo(x). We have I,~(y) = In(x)  
1 for all n > 0. Hence limn--,oo - ~  log#(In(y))  = ha(F)  follows. 

Choose s > 0. Since the maps y v-+ ~(x, y) are uniformly equicontinuous for 

each x E P and because of the second part  of Lemma 3 there is an no E N such 

that  I~o(x) - ~o(y)] < e holds for x and y in the same element of Zno,~0. Since 

F - i ( x )  and F - i ( y )  are elements of the same Zi,i for i > 0 we get by a similar 

computat ion as in the proof of the above lemma even with the same constant C 

1 log ]In(y)nyl 1 > -  ~(P-~(x)) 2cn0 (n-2n0)e, 
n n n n 

i = 1  

!logl/n(y)nyl 1 ~ 2Cno (n- 2n0)c _ - ~o(F-~(x)) + + 
n n n n 

i = 1  

Taking limn-~oo finishes the proof since e > 0 was arbitrary. I 

For a subset S of X~ let H(e,:/:~, S) be the set of all finite or countable covers 

of S by sets of the form I n I I - l a  for I E Zo with diameter less than or equal to 

~. Define 

ut,z~(S) = lim inf E l i ]  t and HDz~(S) =inf{ t :  u t , z~ (S)=0} .  
e--+0 CEU(e,2;~,S)  IEC 

This is well-defined since limn-,oo [In(X)I]x[ = 0. A similar definition was first 

used in [9]. We will use the following property of HDz,  which is also proved there: 

If Sk C_ X~ for k _ 0 and S = Ok>oSk then HDz,(S)  = supk>oHDz~(Sk ). 
Furthermore the usual Hausdorff dimension and HDz,  do not differ on subsets 

of G~ which is shown by the following lemma. 

LEMMA 11: Let S C G~. Then HD(S) >_ HDz~(S). 
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Proof: Set f ~ d# = �9 and fix 6 > 0 such that  ~ + 2e < 0 still holds (remember 

f ~ d# < 0). Similarly as in the proof of Lemma 9 we get for y E S 

' I n ( cqY)a '>-exp (~ (F- i (a 'Y ) ) -Cn~176162  ' ~ = 1  

'I'~(a'Y)~'<-exp(~'~cP(F-i(a'Y))+Cn~176 " i = 1  

Since (a ,y)  E G we find a constant M(y) > 0 such that  M(y)-le '~('~-2E) < 
II~(a,y)o] <_ M(y)e n(~+2~) holds. Set Sm = {y E S: M(y) < m}. Then Sm C_ 

Sm+l and Um>l S m =  S. 

Let / ~  be a cover of Sm by open intervals with length less than or equal 

to ~. Fix U E /r and let n be minimal such that  [In(a,y)~[ < [U[. Then 

II,~_l(a,y)~[ >_ [U[. With N = me -(~+2~) > 0 we get m - l e  ~(r < [U I 
Ne  n(r and 

[I,~-l(a,y)~[ < mNe4~ 

Hence we can compute 

1 _-4n~,~, c]U[1-4~/(r _> > 

with c = ~J-~N 46/(~+2~) since n < 1 log L~. - ~--4-~ 
Two different I~(a,y) are disjoint or one contains the other. Hence we can 

find a cover Ou of U n Sm by disjoint In(a,y) constructed above. We have 

~-,1~ov IIi <: 3tUt since ill <__ IU[ for all I E Ou. We get 

card(Ou) < 3]U I 1 iUl_l+4e/(r ) = 
3 

c c 

and 

~_, III t <_ ~lUIt+4E/(~+2~). 
IEOu 

With this est imate for all U E b /we  get for 0 = Uueu Ou 

3 
~_~ ]lit <_ 3c ~ IUIt+4e/(~+2r and ut,z~(Sm) <_ cUt+4~/(r 
lEO UEt4 

Set C(r = 3/c and D(e) = 4e/(~+2r Then C(e) > 0 and D(r < 0 and 

lim~-~0D(E) = 0. Then HD(Sm) >_ HDz~,(Sm) follows. Otherwise one could 

find t < HDz~(Sm) and e > 0 such that  HD(Sm) < t + D(e) < HDz~(Sm) 
holds. Then vt,z~ (Sm) <_ C(r = 0 would follow, a contradiction. 
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Since m E N was arbitrary the desired result follows. I 

We now prove that  z is also a lower bound for HD(X~). With Lemma 2 this 

gives the 

P roof  of  Theorem 1: It  remains to prove z <_ HD(X~) for a E E if z > 

0. So choose an arbi trary t E (0, z) and let r be the measure constructed in 

Proposition 1 with h, + t f ~ d  r > 0 and r(Uzeio~. I )  > 0 for a E P.  This 

implies t <_ h ~ ( F ) / ( - f  ~ dr) since f ~ d r < 0. Let G be defined as in Lemma 

9. With Lemma 11 we get HDzo(Ga) <_ HD(G~) <_ HD(X~) for a E E. Hence 

the missing step is to prove h~,(F)/(- f  ~dr) <_ HDz~(G~). 
To do this observe that  we have 

lim l~ h~(F) 
,H~  loglI~(a,y)~ I - f ~Pdr for (a,y) E G~. 

Furthermore Ujez~ .  I N G = UyeG~I~(a,y) because of Lemma 10 and 

r(Uzez~.~ I N G) = r(Uxez~.~ I )  > 0 since G has measure 1. 

Choose 0 > 0 arbi trary and define 

{ logr(In(a,y)) } h~(F) - v ~ <  for a l l n > k  . 
Sk = y E Ga: - f (pdr - loglln(a,y)~l - 

Then Sk C Sk+l and G~ = Uk_>l Sk holds. Hence we get 

lim r (  U Ioo(a,y)) = r( U Ioo(a,y)) > O. 
k --~ oo 

y E S k  y c G a  

For all n > k we have 

- ~ - ~ - _ ~  

(lln(a,y)l~) -3 ~ > r(I,,(a,y)), 

Choose ko large enough, such that  r(Uyesko I~(a,y)) > 0 holds. For all e <: 

minyesko ]Iko(a,Y)(,] we get for B E bl(e,Z(,,Sko) 

I E B  

>_ r(I) >_ r( U Ioo( ,y)) > o 
1Ezoo yESko  
IaEI3 

and 
h~(F) 

HD~(Sko) >_ _ f ~od~# 

follows. Since vq was arbitrary and Sk C_ G~ we get 

h,(F) 
HDz~,(G,,) > _ f r 
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4. T h e  f o r m u l a  for  HD(X) 

We give the proof of Theorem 2 here. There is a general theory for any Borel 

subset of R n, which connects the Hausdorff dimension of the whole set and the 

Hausdorff dimension of vertical intersections. We refer to Corollary 7.12 in [1] 

to obtain HD(X) _> z + 1. The reverse inequality needs a different, but similar 

calculation as in the proof of Theorem 1. Furthermore we need some information 

about  the geometric form of the I E Z,~ for an n > 0. 

LEMMA 12: Suppose that the assumptions of Theorem 2 are fult~lled. For I E Z~ 

and n >_ 0 set d(I) -- suPaEn I Ilol. Then there is an integer A and a covering 
bl(I) by squares with sidelength d(I) such that card(Lt(I)) <_ Aid(I) holds for 
each I. 

Proof." Choose an arbi trary I E Zn for an n _> 0. Lemma 5 in [15] shows that  

the boundary of I consists of two vertical lines and two differentiable functions. 

Denote the supremum of the absolute value of the slope of these two functions 

by s(I). Set infx~[0,1] [T'x[ = E > 1 and remember that  we have set k := 

sup ]Og/Oy]. Then the proof of Proposition 2 in [15] shows that  there is a C < c~ 

such that  

< c E 
i=1 

Since k/E < 1 we get 

s( i )  < c < V -  < 
i=O E 

Let J be an interval in [0, 1] with length d(I). Then I M I I - 1 J  is contained in a 

rectangle J • g with [g[ < d(I) § 2]JIS(I ). Let A be the least integer greater 

than 1 -t- 2S(I) .  Then I N I I - 1 j  can be covered by A squares with sidelength 

d(I). Since ]HI] < 1 we get that  I can be covered by A d--~1 ) squares of sidelength 

d(I) and the proof is finished since A is independent of the choice of I .  I 

Proof of Theorem 2: For In E I,~ set Z~ = F-nI~ and v -- (Tn[nz~) -1 (a). 

Then the chain rule gives 

We furthermore get 

n - 1  

sup H 
X~ l-I- lv - =  

,,-1~ ~ I Ogc,y (F~x) d(,r=) = sup < sup 13" 
aEIIIn xEZ,~ .= 
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since a c IIIn is equivalent to u E HZn. 

Fix 0 C (0, 1) arbitrarily. Then there is an no such that d(In) <_ zg/x/~ for all 

In E In  with n _> no, since 

I ~ ( x )  < _ k < l  f o r a l l x .  

Of course Ui~ez~ In covers x .  For In C Zn let g/(In) be the cover of In found 

in the above Lemma 12. Then U1.ez , /4( In)  is a cover of x by subsets with 

diameter less than or equal to vg. 

Choose t > z + 1. Then we get using Lemma 12 

< E 

A t <- F_, 

<_Av~ t ~ exp ( t - l )  sup ~ l o g  N 
ZnEZ~ x E Z n  i = 0  

t 
= A v ~  pn(F, (t - 1)~) 

for all n >_ no. Since t - 1 > z we have pn(F, (t - 1)~) < 1 for large n. Therefore 

ut,o(X) <_ A v ~  t. Hence ut(X) < co holds for all t > z + 1 and H D ( X )  <_ z + 1 

follows. I 
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